Abstract
The latest generations of ultra-bright Xenon short-arc discharge lamps have prodigious emissions outside the visible spectrum, primarily in the near infrared. Their brightness distributions are spatially and angularly inhomogeneous due to both the pronounced non-uniformities of the plasma arc and the substantial infrared radiation from the hot electrodes. These characteristics are fortuitously favorable for applications in photonic surgery, biomedical diagnostics, high-temperature chemical reactors and furnaces: cases where the full lamp spectrum is utilizable, and the key is reconstituting the spectral power density of the optimal regions of the lamp's plasma at a remote target. The associated optical systems must be tailored to lamp radiometric properties that are not extensively available and invariably are restricted to visible light due to their widespread use in projection systems. We present experimental measurements for the spectral, spatial and angular distributions of 150 W lamps of this genre, and relate to their ramifications for broadband high-flux applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.