Abstract

The successful use of advanced oxidation processes to treat aqueous solutions containing undesirable organic species requires the degradation of these species to lower molecular weight, lower hazard compounds. Safe application of this technology requires a thorough understanding of the mechanisms of degradation. These oxidative transformations are mainly initiated by the reactions of reactive oxygen species, particularly hydroxyl radicals. These react with organic molecules to generate carbon-centered radicals. In the presence of dissolved oxygen, the carbon-centered radicals are next converted to peroxyl radicals, which then decay to lower molecular weight species by multiple mechanistic pathways. Formic acid and its conjugate base formate are the last stable chemical species produced immediately before the complete mineralization of any organic molecule undergoing oxidative degradation in aqueous solution. Once understood, the radical-induced chemistry of formic acid/formate under these conditions has wide applicability in all advanced oxidation technologies. To develop this quantitative knowledge, we have performed a series of 60Co gamma irradiation studies on aqueous formic acid/formate over different pH and solution conditions. The measured species concentration changes, as a function of applied dose, are compared with the predictions of a kinetic computer model constructed from literature reactions and reported rate coefficients. The excellent agreement found between the results and modeling gives confidence in the mechanism presented here and provide the first complete computer model for the radiolytic degradation of formic acid in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.