Abstract

An investigation has been undertaken to determine whether ionizing radiation might engender racemization ( radioracemization) of optically active amino acids, along with their well-known radiolysis. We have exposed a number of solid and dissolved optically active amino acids to the ionizing radiation from a 3000-Ci 60Co γ-ray source for periods of time which would engender substantial, but not total radiolysis. γ-Ray doses which caused 55–68% radiolysis of solid amino acids typically engendered 2–5% racemization. Aqueous solutions of the sodium salts of amino acids which underwent 53–66% radiolysis typically showed 5–11% racemization. The corresponding hydrochloride salts in aqueous solution, however, underwent little or no racemization. In aqueous solution both percentage degradation and percentage racemization were approximately proportional to γ-ray dosage within the range employed (1–36 × 10 6 rads). Mechanisms for the radioracemization of amino acids in the solid state and as dissolved sodium salts are proposed, and the absence of racemization for dissolved hydrochloride salts is rationalized. Implications of these observations with regard to the origin of optical activity by the Vester-Ulbricht β-decay mechanism are discussed, as are their implications regarding the use of diagenetic racemization rates of ancient amino acid samples as criteria for geochronological and geothermometric calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.