Abstract
ABSTRACT Experimental results on the processing of NH3:CO ice mixtures of astrophysical relevance by energetic (538 MeV 64Ni24+) projectiles are presented. NH3 and CO are two molecules relatively common in interstellar medium and Solar system; they may be precursors of amino acids. 64Ni ions may be considered as representative of heavy cosmic ray analogues. Laboratory data were collected using mid-infrared Fourier transform spectroscopy and revealed the formation of ammonium cation (NH$_4^+$), cyanate (OCN−), molecular nitrogen (N2), and CO2. Tentative assignments of carbamic acid (NH2COOH), formate ion (HCOO−), zwitterionic glycine (NH$_3^+$CH2COO−), and ammonium carbamate (NH$_4^+$NH2COO−) are proposed. Despite the confirmation on the synthesis of several complex species bearing C, H, O, and N atoms, no N–O-bearing species was detected. Moreover, parameters relevant for computational astrophysics, such as destruction and formation cross-sections, are determined for the precursor and the main detected species. Those values scale with the electronic stopping power (Se) roughly as σ ∼ a S$_\mathrm{ e}^n$, where n ∼ 3/2. The power law is helpful for predicting the CO and NH3 dissociation and CO2 formation cross-sections for other ions and energies; these predictions allow estimating the effects of the entire cosmic ray radiation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.