Abstract
To determine whether arytenoid cartilage position and dynamics change with advancing duration and severity (as graded by MDS-UPDRS part III scores) in Parkinson's disease, in a cross-sectional study design, we performed laryngeal four-dimensional computed tomography (4D-CT) in people with Parkinson's disease and controls. 31 people with Parkinson's disease covering a range of disease duration and severity and 19 controls underwent laryngeal 4D-CT whilst repeatedly vocalizing. We measured on each CT volume the glottic area (GA), inter-arytenoid distance (IAD), IAD-Area index (IAI) and arytenoid cartilage velocity ([Formula: see text]). People with Parkinson's disease had reductions in the mean/effective minimum IAD when compared to controls, while mean/effective minimum GA and mean/effective maximum IAI were increased. Arytenoid cartilage velocities showed no difference. On Spearman correlation analyses, advancing disease duration and severity of PD showed moderately strong and significant correlations with increasing mean/effective minimum GA, increasing mean/effective maximum IAI and decreasing effective minimum IAD. Linear mixed models which considered the effects of intra and inter-individual variation showed that both disease duration (b = -0.011, SEb = 0.053, 95% CI [-0.022, 0], t(27) = -2.10, p = 0.045) and severity (b = -0.069, SEb = 0.032, 95% CI [-0.14,-0.0039], t(27) = -2.17, p = 0.039) were significant predictors for IAD, and also for transformed values of the GA and IAI. There are progressive alterations in phonatory posturing as Parkinson's disease advances. The increases in GA despite reductions in IAD are concordant with prior observations of vocal fold bowing. Our study provides a basis for using laryngeal 4D-CT to assess disease progression in Parkinson's disease.
Highlights
Parkinson’s disease (PD) is a neurodegenerative condition which remains a significant health issue worldwide
People with Parkinson’s disease had reductions in the mean/effective minimum inter-arytenoid distance (IAD) when compared to controls, while mean/effective minimum glottic area (GA) and mean/effective maximum IAD-Area index (IAI) were increased
Linear mixed models which considered the effects of intra and inter-individual variation showed that both disease duration (b = -0.011, SEb = 0.053, 95% CI [-0.022, 0], t(27) = -2.10, p = 0.045) and severity (b = -0.069, SEb = 0.032, 95% CI [-0.14,0.0039], t(27) = -2.17, p = 0.039) were significant predictors for IAD, and for transformed values of the GA and IAI
Summary
Parkinson’s disease (PD) is a neurodegenerative condition which remains a significant health issue worldwide. No current intervention alters the course of the disease. For lack of alternatives, assessing progression in PD is still primarily focused on clinical assessment of motor function, often with the aid of structured rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS). These assessments are subjective with high inter- and intra-rater variability [1, 2]. More reliable assessment tools would allow for shorter follow-up periods and smaller sample sizes when studying the effects of novel disease-modifying therapies [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.