Abstract
The radiological characterization of soil contaminated with natural radionuclides enables the classification of the area under investigation, the optimization of laboratory measurements, and informed decision-making on potential site remediation. Neural networks (NN) are emerging as a new candidate for performing these tasks as an alternative to conventional geostatistical tools such as Co-Kriging. This study demonstrates the implementation of a NN for estimating radiological values such as ambient dose equivalent (H*(10)), surface activity and activity concentrations of natural radionuclides present in a waste dump of a Cu mine with a high level of natural radionuclides. The results obtained using a NN were compared with those estimated by Co-Kriging. Both models reproduced field measurements equivalently as a function of spatial coordinates. Similarly, the deviations from the reference concentration values obtained in the output layer of the NN were smaller than the deviations obtained from the multiple regression analysis (MRA), as indicated by the results of the root mean square error. Finally, the method validation showed that the estimation of radiological parameters based on their spatial coordinates faithfully reproduced the affected area. The estimation of the activity concentrations was less accurate for both the NN and MRA; however, both methods gave statistically comparable results for activity concentrations obtained by gamma spectrometry (Student's t-test and Fisher's F-test).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.