Abstract
We propose a curve-based Riemannian geometric approach for general shape-based statistical analyses of tumours obtained from radiologic images. A key component of the framework is a suitable metric that enables comparisons of tumour shapes, provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumour shapes and allows for a rich class of continuous deformations of a tumour shape. The utility of the framework is illustrated through specific statistical tasks on a data set of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumour with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumour shape information to survival models containing clinical and genomic variables results in a significant increase in predictive power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.