Abstract

At the beginning of the Space Age, both propulsion and power generation in the spacecraft has been the main issue for consideration. Considerable research has been carried out on technologies by several Space Agencies to reach outer planets and generate electric power for the systems and subsystems in the spacecraft (SC). Various types of power source such as solar photovoltaic, Radioisotope power systems (RPS) have been used by Space Agencies. New technology such as reactor based, electric solar sail and electrodynamic bare tethers might be used in the future for both propulsion and power generation. Mainly, both NASA and Russian Agency worked separately using nuclear technology to obtain more efficiency in their systems for deep space exploration. Radioisotope Power Systems (RPS), is a nuclear-powered system to generate electric power to feed communication and scientific systems on a spacecraft. Radioisotope Thermoelectric Generators (RTGs), a type of Radioisotope Power System, were used in the past as electric power supplies for some navigational and meteorological missions, and most outer-planet missions. Radioisotope power systems use the natural decay of radionuclides produced by a nuclear reactor. The expensive, man-made Plutonium-238 (238Pu) is the appropriate source of energy used in RPS fueling; its long half-life (~87 years) guarantees long time missions. The limited avability of Plutonium-238 is inadequate to support scheduled NASA mission beyond 2018. After the Cold War, throughout the Non-Proliferation of Nuclear Weapons Treaty, the production and processing of these resources have been severally reduced. There is a high-priority recommendation to reestablish production to solve the severe 238Pu demand problem (National Reseach Council, 2009). The isotope initially selected for terrestrial and space power applications was Cerium-144 because it is one of the most useful fission products available from nuclear reactor (Furlog, 1999; Lange, 2008). Its short half-life (about 290 days) made Cerium-144 compatible with a possible short-time mission. However, the high radiation associated with a powerful beta/gamma emission produces several problems with the payload interaction and safety in the case of reentry orbit. The development of RTGs was assigned to The Atomic Energy Commission in 1955. The first system developed for space situation was the System for Nuclear Auxiliary Power (SNAP). The Cerium-144 fueled SNAP-1 power system was never used in space. The first flight with a RTG was SNAP-3 in 1961 delivering 11.6 kW over a 280 days period, using as fueling Polonium-210 (Po-210) isotope. Po-210 is an alpha emitter with

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.