Abstract

IntroductionThe clinical development of radioimmunotherapy with astatine-211 is limited by the lack of a stable radiolabeling method for antibody fragments. An astatinated N-heterocyclic carbene (NHC) Rhodium complex was assessed for the improvement of radiolabeling methodologies with astatine. MethodsWet harvested astatine-211 in diisopropyl ether was used. Astatine was first reduced with cysteine then was reacted with a chlorinated Rh-NHC precursor to allow the formation of the astatinated analogue. Reaction conditions have been optimized. Astatine and iodine reactivity were also compared. Serum stability of the astatinated complex has been evaluated. ResultsQuantitative formation of astatide was observed when cysteine amounts higher than 46.2 nmol/μl of astatine solution were added. Nucleophilic substitution kinetics showed that high radiolabeling yields were obtained within 15 min at 60°C (88%) or within 5 min at 100°C (95%). Chromatographic characteristics of this new astatinated compound have been correlated with the cold iodinated analog ones. The radioiodinated complex was also synthesized from the same precursor (5 min. at 100°C, up to 85%) using [125I]NaI as a radiotracer. In vitro stability of the astatinated complex was controlled after 15 h incubation in human serum at 4°C and 37°C. No degradation was observed, indicating the good chemical and enzymatic stability. ConclusionThe astatinated complex was obtained in good yield and exhibited good chemical and enzymatic stability. These preliminary results demonstrate the interest of this new radiolabeling methodology, and further functionalizations should open new possibilities in astatine chemistry. Advances in knowledge and implications for patient careAlthough there are many steps and pitfalls before clinical use for a new prosthetic group from the family of NHC complexes, this work may open a new path for astatine-211 targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.