Abstract
An approach to detecting discontinuities in carbon fiber-reinforced polymers, caused by impact loading followed by compression testing, was developed. An X-ray sensor-based installation was used, while some algorithms were developed to improve the quality of the obtained low-contrast radiographic images with negligible signal-to-noise ratios. For epoxy/AF (#1) composite subjected to a “high-velocity” steel-ball impact with subsequent compression loading, it was not possible to detect discontinuities since the orientation of the extended zone of interlayer delamination was perpendicular to the irradiation axis. After drop-weight impacts with subsequent compression loading of epoxy/CF (#2) and PEEK/CF (#3) composites, the main cracks were formed in their central parts. This area was reliably detected through the improved radiographic images being more contrasted compared to that for composite #3, for which the damaged area was similar in shape but smaller. The phase variation and congruency methods were employed to highlight low-contrast objects in the radiographic images. The phase variation procedure showed higher efficiency in detecting small objects, while phase congruency is preferable for highlighting large objects. To assess the degree of image improvement, several metrics were implemented. In the analysis of the model images, the most indicative was the PSNR parameter (with a S-N ratio greater than the unit), confirming an increase in image contrast and a decrease in noise level. The NIQE and PIQE parameters enabled the correct assessment of image quality even with the S-N ratio being less than a unit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.