Abstract

PurposeTo develop models based on radiomics and genomics for predicting the histopathologic nuclear grade with localized clear cell renal cell carcinoma (ccRCC) and to assess whether macro-radiomics models can predict the microscopic pathological changes. MethodIn this multi-institutional retrospective study, a computerized tomography (CT) radiomic model for nuclear grade prediction was developed. Utilizing a genomics analysis cohort, nuclear grade-associated gene modules were identified, and a gene model was constructed based on top 30 hub mRNA to predict the nuclear grade. Using a radiogenomic development cohort, biological pathways were enriched by hub genes and a radiogenomic map was created. ResultsThe four-features-based SVM model predicted nuclear grade with an area under the curve (AUC) score of 0.94 in validation sets, while a five-gene-based model predicted nuclear grade with an AUC of 0.73 in the genomics analysis cohort. A total of five gene modules were identified to be associated with the nuclear grade. Radiomic features were only associated with 271 out of 603 genes in five gene modules and eight top 30 hub genes. Differences existed in the enrichment pathway between associated and un-associated with radiomic features, which were associated with two genes of five-gene signatures in the mRNA model. ConclusionThe CT radiomics models exhibited higher predictive performance than mRNA models. The association between radiomic features and mRNA related to nuclear grade is not universal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.