Abstract

New heat generation measurements for radiogenic granites were made for thirteen localities in the Darling Range, Western Australia. These are integrated with published data to estimate temperatures at depth within radiogenic-granite bodies for this region of the south-western Yilgarn Craton. The heat generation in the radiogenic granites is calculated from the concentrations of uranium, thorium and potassium measured in the field. A reliable relationship between total counts from a commercial portable spectrometer and Geiger Müller counter was found for the various granites measured. The relationship Ao = 0.34 + 2.16 CU, with a correlation coefficient of 0.98, was found between uranium (CU in ppm) content and heat generation (Ao in units of µW/m3) for those radiogenic granites measured in the Darling Range, and also for two granites in the Pilbara Craton. Measured heat generation in the Darling Range was found to vary between 4 and 10 μW/m3, the maximum of which is higher than previously known heat generation in granites for the Yilgarn Craton. Based on these new data, temperatures between depths of 3000 and 4000 m are modelled to fall between 60 and 110°C, depending on the thickness of the granitic bodies. These results are encouraging for potential low-temperature geothermal developments in this region, which is adjacent to the Perth metropolitan area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.