Abstract

Composite porous silica-iron oxide nanoparticles with the ability to store chemical payloads and release them upon triggering a radiofrequency field were prepared. The particle structure consisted of a hollow porous silica core, covered with a layer of iron oxide nanoparticles bound to the silica surface by electrostatic forces. The particle size distribution, morphology, porosity and stability was systematically studied together with their sorption capacity and heating properties under the effect of a radiofrequency magnetic field. It was observed that the particles are able to achieve a heat dissipation rate of nearly 200 W/g, which was high enough for using the radiofrequency field as a trigger mechanism for the remote release (desorption) of a chemical payload from the particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.