Abstract

Purpose: The purpose of this study was to test the feasibility and efficacy of using a high-power generator with nondeployable electrodes to create large zones of coagulation in an in vivo porcine liver model.Methods: With approval from our institution's research animal care and use committee, 12 female swine (mean weight = 55 kg) were anesthetized and received RF ablation at laparotomy. Twenty-nine ablations were performed in four groups using: (i) a conventional 200-W generator and cluster electrode (n = 4), or an experimental prototype 250-W generator and (ii) a single, 17-gauge electrode (n = 9), (iii) a cluster electrode (n = 8) or (iv) three electrodes spaced 2.0 cm apart in a triangular configuration (n = 8). In the three-electrode group, power was applied by switching between electrodes using a prototype switching device. All electrodes were internally cooled. Ablation zone size, shape and generator data from each group were compared using a mixed-linear model with animals modeled as random effects.Results: The high-power generator was able to increase significantly the zone of coagulation. Mean (±SD) ablation diameter was largest in the switched group (4.31 ± 0.7 cm) followed by the cluster (3.98 ± 0.5 cm) and single-electrode (3.26 ± 0.5 cm) groups. Mean diameter in the high-power single-electrode group was no different than the low-power cluster group (3.25 ± 0.4 cm, p = 0.98). Circularity measures were high (>0.75) in all groups.Conclusions: Coupling a high-power generator and switching device is feasible. At higher powers, the switching device creates larger zones of ablation than cluster or single electrodes. Single-electrode ablations created with the prototype high-power generator were equivalent to those produced with the cluster electrode at conventional lower powers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.