Abstract

A recently developed three-dimensional real-time position management system (RPM) uses an ultrasound ranging technique that enables multiple distance measurements between two reference catheters and a mapping catheter each equipped with ultrasound transducers. In addition to three-dimensional representation of the catheters and ablation sites it displays real-time movements of catheters (including the tip and shaft). A recently released version of the system enables additional geometry reconstruction of the heart chamber and activation mapping. This study included 21 patients (mean age 59 +/- 14.5 years) referred for radiofrequency catheter ablation of various arrhythmias. Geometry was reconstructed by tracing the endocardial contour of the respective heart chambers. Global and local color coded activation maps were constructed to confirm the nature of arrhythmia and to guide ablation. Spontaneous or induced arrhythmias were typical atrial flutter (n = 8), atypical atrial flutter (n = 3), atrioventricular nodal reentrant tachycardia (n = 3), atrial tachycardia (n = 2), atrial fibrillation (n = 2), ventricular tachycardia (n = 2), and Wolff-Parkinson-White syndrome (n = 1). Geometry reconstruction and mapping of arrhythmias were possible in 20 of 21 patients. RPM-guided radiofrequency ablation was successful in 19 (95%) of 20 patients. Due to difficulties in steering the RPM mapping/ablation catheter, in 6 (28%) successfully mapped patients, radiofrequency ablation was performed using another catheter. In one patient, the RPM-guided map was inconclusive and in another patient, ablation failed due to multiple reentrant circuits. No complications were observed. In conclusion, the new RPM system enables geometry reconstruction and three-dimensional positioning of the ablation catheters, reconstruction of the activation maps, marking of anatomic structures and reproducible tracking of multiple ablation sites. The system could be used to guide radiofrequency ablation of atrial and ventricular arrhythmias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call