Abstract

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality. Radioembolization is a form of selective internal radiation therapy that is increasingly used to treat patients with HCC, particularly those with more advanced disease. This review will try to answer some of the most frequently asked questions regarding the use of radioembolization to treat HCC patients and provide supporting evidence. Rather than a new form of transarterial chemoembolization (TACE), radioembolization is a form of brachytherapy that has a highly localized effect on liver tumors. The two devices that are available (glass and resin microspheres) are similar in size (25 to 35 microns), but differ in the amount of isotope loaded onto each microsphere and the number of spheres injected in a single treatment. Despite this, the evidence seems to indicate that the antitumor effect and safety profiles of these two devices in HCC are similar. Liver cirrhosis frequently underlies HCC. Despite the higher chance for relevant liver toxicity, there is now good evidence from large studies to show that radioembolization can be safely and effectively performed in cirrhotic patients with HCC. With no randomized controlled trials published so far, there is recent scientific evidence that allows comparison between radioembolization and other treatment options including TACE and the systemic, agent sorafenib. Radioembolization appears to have similar efficacy to TACE in patients that are ideal candidates for locoregional therapy and has shown encouraging results in patients that have failed TACE or who are poor candidates for this therapy. Survival in comparable sorafenib- and radioembolizationtreated HCC patients is quite similar. The indication for radioembolization has to be balanced against the risk of liver decompensation and the natural history of the disease, based on tumor burden and liver function. Patients with inadequate liver functional reserve and diffuse tumors affecting either lobes, or portal vein thrombosis that reaches the main trunk should probably not be treated with this procedure.

Highlights

  • Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third most common cause of cancer-related mortality [1]

  • Cirrhotic patients of various etiologies and patients infected by viral hepatitis are prone to developing HCC

  • Radioembolization is a form of selective internal radiation therapy that is increasingly used to treat patients with HCC, those with more advanced disease [5,6]

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third most common cause of cancer-related mortality [1]. Available microspheres for radioembolization are made of either resin (SIR-Spheres®, Sirtex Medical Limited, Sydney, Australia) or glass (TheraSphere®, Nordion, Ottawa, Canada) These small inert microspheres (measuring ~25 to 35 microns), loaded with the radionuclide yttrium-90 (90Y), lodge within the peripheral neovasculature of tumors, where they deliver high-energy, betaradiation over a limited range (mean penetration of radiation into tissues is 2.4 mm), thereby confining the tumoricidal dose to the immediate proximity of the tumor and sparing the normal liver parenchyma [10,11]. The second larger trial in 142 patients without portal vein thrombosis showed that compared with TACE (70 mg cisplatin), 131I-labeled lipiodol (60 mCi; 2.2 GBq) was better tolerated with similar response rates (57% vs 64%) and 2-year overall survival (42% vs 38%) [15]. The evidence (outlined below) would seem to indicate that the

BCLC tumor stage and type of microsphere
How does the clinical outcome for radioembolization compare with TACE?
Number of patients
How does radioembolization compare with sorafenib?
Findings
When should patients not be treated with radioembolization?
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.