Abstract
Assessment of the potential environmental impact of heavy metals (HM) mobilized by coal-fired power plants showed that water leaching of HM from pulverized fuel ash may for certain HM constitute an important pathway to the aquatic environment. This process was therefore investigated in more detail by laboratory experiments. Batch experiments were performed in order to simulate ash pond conditions, whereas column experiments were carried out to represent water leaching from fly ash deposits. Using highly sensitive radiochemical techniques such as radioactive tracers and neutron activation of fly ash the fate of a single HM could be easily followed even in very low concentration experiments. Employing radioisotopic tracers the distribution coefficients of simple ionic forms of As, Sb, Bi, Se, Te, Cr, Mo, W, Ni, Cd in a coal fly ash/water system could be determined as a function of pH. Results obtained on the adsorption and desorption behaviour of HM on coal fly ash can be explained in part on the basis of the surface predominance and the aqueous chemistry of single ionic, mainly anionic, forms of the relative elements. But ion exchange and coprecipitation phenomena also seem to be important processes. The nature and concentration of ions contained originally in the water used (distilled water, fly ash leachate and seawater) were found to have a strong influence on the sorptive behaviour of HM on coal ashes. The high degree of applicability of radiochemical and nuclear techniques to coal ash water leaching problems has been demonstrated and further points for subsequent research in this field possibly using nuclear techniques are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.