Abstract

A vast knowledge of nuclear data is available and is grouped under three headings, namely, nuclear structure, nuclear decay and nuclear reaction data. Still newer aspects are under continuous investigation. Data measurements are done using a large number of techniques, including the radiochemical method, which has been extensively worked out at Julich. This method entails preparation of high-quality sample for irradiation, isolation of the desired radioactive product from the strong matrix activity, and preparation of thin source suitable for accurate measurement of the radioactivity. It is especially useful for fundamental studies on light complex particle emission reactions and formation of low-lying isomeric states, both of which are rather difficult to describe by nuclear model calculations. The neutron induced reaction cross section data are of practical application in fusion reactor technology, particularly for calculations on tritium breeding, gas production in structural materials and activation of reactor components. The charged particle induced reaction cross section data, on the other hand, are of significance in medicine, especially for developing new production routes of novel positron emitters and therapeutic radionuclides at a cyclotron. Both neutron and charged particle data also find application in radiation therapy. A brief overview of advances made in all those areas is given, with major emphasis on nuclear reaction cross section data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call