Abstract
The detection of Fukushima-derived radionuclides in Pacific bluefin tuna (PBFT) that crossed the Pacific Ocean to the California Current Large Marine Ecosystem (CCLME) in 2011 presented the potential to use radiocesium as a tracer in highly migratory species. This tracer requires that all western Pacific Ocean emigrants acquire the (134)Cs signal, a radioisotope undetectable in Pacific biota prior to the Fukushima accident in 2011. We tested the efficacy of the radiocesium tracer by measuring (134)Cs and (137)Cs in PBFT (n = 50) caught in the CCLME in 2012, more than a year after the Fukushima accident. All small PBFT (n = 28; recent migrants from Japan) had (134)Cs (0.7 ± 0.2 Bq kg(-1)) and elevated (137)Cs (2.0 ± 0.5 Bq kg(-1)) in their white muscle tissue. Most larger, older fish (n = 22) had no (134)Cs and only background levels of (137)Cs, showing that one year in the CCLME is sufficient for (134)Cs and (137)Cs values in PBFT to reach pre-Fukushima levels. Radiocesium concentrations in 2012 PBFT were less than half those from 2011 and well below safety guidelines for public health. Detection of (134)Cs in all recent migrant PBFT supports the use of radiocesium as a tracer in migratory animals in 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.