Abstract

In this Letter, we report on the sub-parts-per-billion-level radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy. The 14C/C ratio of samples is measured by targeting a 14CO2 absorption line with minimal interference from other CO2 isotopes. Using a quantum cascade laser as a light source allows for a compact experimental setup. In addition, measurements of sample gases with 14CO2 concentrations as low as 100 parts-per-trillion (ppt) are presented. The Allan deviation demonstrates a noise equivalent concentration of 30 ppt at an averaging time of 9 min. The achieved sensitivity validates this method as a suitable alternative to more complex optical detection methods for radiocarbon dioxide detection used so far, and it can be envisioned for future in situ radiocarbon detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call