Abstract

ABSTRACTCaves containing perennial ice deposits make up a little-known, but emerging part of the cryosphere under increasing scrutiny from the scientific community. M-17, a sag-type ice cave opening at 1879 m asl in the Tolminski Migovec massif of the Julian Alps (NW Slovenia) contains a perennial underground ice deposit whose paleoclimate sensitivity is poorly understood and whose longevity under current climate change is at risk. The past mass balance of this cave is constrained using wood macro-remains embedded in ice. Accelerator mass spectrometry radiocarbon dating of 18 wood samples embedded in ice provides the largest currently available dataset for a subterranean ice deposit in the southern European Alps. The reconstructed chronostratigraphy reveals three main phases of likely positive ice balance around 900–1100 AD, 1200–1300 AD, and 1700–1800 AD, as well as a period of negative mass balance around 1300–1400 AD. The onset of cave glaciation is deemed to have occurred no later than about 900 AD, with evidence of overall positive ice mass balance during multi-decadal periods characterized by cooler-than-average summers and wetter-than-average springs. Conversely, negative mass balance is recorded during a period warmer-than-average summers and dry springs. The cave has experienced ice mass loss since its discovery in the 1980s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call