Abstract

The linear-quadratic (LQ) model is useful in the radiobiological assessment of a wide variety of radiotherapy treatment techniques, not being confined to analysis of fractionated treatments alone. The model uses parameters that must be separately specified for tumours and dose-limiting normal tissues, and may therefore be used to help identify treatments that are most likely to maximise tumour cell kill while minimising the risk of severe normal-tissue damage. Additionally, the model is capable of making tentative allowance for the tumour repopulation that can occur during extended treatments. Intercomparisons between different types of treatment are made through the concept of the Extrapolated Response Dose (ERD). The ERD is calculated for each critical tissue and takes account of both the radiobiological parameters and the dose/time pattern of radiation delivery. Known tolerance doses for specified organs may be expressed as an ERDtolerance value, and, if a proposed 'new' treatment is to be successful, its associated ERD value must not exceed ERDtolerance. Examples of this procedure are given in this paper. It is particularly important that medical physicists fully appreciate the scope and limitations of LQ equations, as the analysis of radiobiology problems using the model often requires a degree of mathematical understanding that clinicians may not possess.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.