Abstract

The biogenesis of basement-membrane components was investigated in the endodermal cells of the rat parietal yolk sac in 12.5-day pregnant rats; 3H-proline was injected into conceptuses. After various time intervals, the parietal yolk sac, including endodermal cells and the associated Reichert's membrane, was removed and processed for electron-microscopic radioautography. Silver grains were counted over endodermal cell organelles and Reichert's membrane. At 2 and 5 min after 3H-proline injection, endodermal cells showed heavy labeling in rough endoplasmic reticulum (rER). Silver grain density over the rER decreased from 2 to 20 min and then remained at a plateau. Grain density was moderate over the Golgi apparatus initially but rose to a peak at 2 hr and decreased by 4 hr and later. Grain density was negligible over secretory granules at 2 and 5 min and increased moderately with time to reach a maximum at 8 hr. Thus, radioautographic peaks occurred sequentially in rER, Golgi apparatus, and secretory granules. By 4 hr and later, silver grains accumulated over Reichert's membrane. These results indicated that endodermal cells incorporated labeled proline into substances which were processed from the rER through the Golgi apparatus, transported from there to the cell surface by secretory granules, and released for export to Reichert's membrane. To clarify the nature of the exported substances, the amount of label present in proline and hydroxyproline residues after 3H-proline injection was measured in Reichert's membrane with or without the associated endodermal cells. Within the cells, 61.8% of the labeled proteins were classified as "sedentary" and 38.2% as "exportable." Of the label exported to Reichert's membrane, 66.3% consisted of type IV collagen and the rest of other basement-membrane components. The results obtained with this model suggest that basement-membrane proteins, including type IV collagen, are elaborated by the associated cells through the classical pathway: rER-Golgi apparatus-secretory granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.