Abstract

The observation of a kilonova AT2017gfo associated with the gravitational wave event GW170817 provides the first strong evidence that neutron star mergers are dominant contributors to the production of heavy r-process elements. Radioactive gamma-ray lines emitted from neutron star merger remnants provide a unique probe for investigating the nuclide composition and tracking its evolution. In this work, we studied the gamma-ray line features arising from the radioactive decay of heavy nuclei in the merger remnants based on the r-process nuclear reaction network and the astrophysical inputs derived from numerical relativity simulations. The decay chain of 50126 Sn (T 1/2 = 230 kyr) → 51126 Sb (T 1/2 = 12.35 days) → 52126 Te (stable) produces several bright gamma-ray lines with energies of 415, 667, and 695 keV, making it the most promising decay chain during the remnant phase. The photon fluxes of these bright gamma-ray lines reach ∼10−5 γ cm−2 s−1 for Galactic merger remnants with ages less than 100 kyr, which can be detected by the high energy resolution MeV gamma-ray detectors like the MASS mission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.