Abstract

New data are reported on the content of radioactive elements in the Precambrian Na-K granitoids from the southwestern margin of the Siberian Craton, Aldan and Ukrainian shields, and Kursk-Voronezh Massif. Analytical data on other regions were generalized for comparison. Two global epochs of Na-K granitoid magmatism bearing elevated contents of radioactive elements (U, Th, K) were distinguished in the Early Precambrian (in Ga): Neoarchean (2.8-2.6) and Late Paleoproterozoic (1.9-1.75). Mesoarchean (3.1-2.8 Ga) epoch of Na-K granite formation has been additionally distinguished at the Australian, South African, and Canadian shields. These epochs of granitization provided high maturity of the crust: geochemical differentiation of the oldest continental blocks and their geochemical and metallogenic specialization for trace elements and RAE. In the southern margin of the Siberian Craton, the most intense granite formation occurred in the Late Paleoproterozoic. The extended South Siberian belt of collisional and within-plate Na-K granitoids is characterized by intense influx of RAE and other trace elements in the upper crustal shell. The southwestern margin of the craton (Yenisei Range) was spanned by repeated Late Neoproterozoic Na-K granite formation, with wide development of collisional and within-plate Na-K granites having elevated Th content and [Th]/[U] ratio. The higher RAE concentrations are typical of within-plate Paleo and Neoproterozoic granitoids. The highest uranium content was found in the postcollisional and within-plate Na-K granites and subalkaline leucogranites. Uranium ore concentrations were formed at the riftogenic stages of evolution of these crustal blocks, when within-plate subalkaline acid magmatism and accompanying hydrothermal metamorphism overprinted granitized crystalline massifs, including high-U sedimentary and volcanic complexes. Areas with the most favorable geological-geochemical environments for the formation of uranium mineralization were distinguished in the southern margin of the Siberian Craton and its nearest folded framing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call