Abstract

One of the consequences of operating detector systems in harsh radiation environments will be radioactivation of the components. This will certainly be true in experiments such as ATLAS and CMS, which are currently being built to exploit the physics potential at CERN's Large Hadron Collider. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. This paper presents predictions for the radioactivation of ATLAS's Semi-Conductor Tracker (SCT) barrel system, based on both calculations and measurements. It is shown that both neutron capture and high-energy hadron reactions must be taken into account. The predictions also show that the SCT barrel-module should not pose any serious radiological problems after operation in high radiation environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.