Abstract

In order to understand the cosmic ray propagation mechanism in galaxies, and its correlation with the sites of star formation, we compare the spatially resolved radio spectral index of three spiral galaxies with their IR distribution. We present new low-frequency radio continuum observations of the galaxies NGC 0628, NGC 3627, and NGC 7331, taken at 327 MHz with the Very Large Array. We complemented our data set with sensitive archival observations at 1.4 GHz and we studied the variations of the radio spectral index within the disks of these spiral galaxies. We also compared the spectral index distribution and the IR distribution, using 70 $\mu$m Spitzer observations. We found that in these galaxies the non-thermal spectral index is anticorrelated with the radio brightness. Bright regions, like the bar in NGC 3627 or the circumnuclear region in NGC 7331, are characterized by a flatter spectrum with respect to the underlying disk. Therefore, a systematic steepening of the spectral index with the increasing distance from the center of these galaxies is observed. Furthermore, by comparing the radio images with the 70 $\mu$m images of the Spitzer satellite we found that a similar anticorrelation exists between the radio spectral index and the infrared brightness, as expected on the basis of the local correlation between the radio continuum and the infrared emission. Our results support the idea that in regions of intense star formation the electron diffusion must be efficient. The observed anticorrelation between radio brightness and spectral index, may imply that the cosmic ray density and the magnetic field strength are significantly higher in these regions than in their surroundings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call