Abstract
There is mounting evidence that mechanical radio source feedback is important in galaxy evolution and in order to quantify this feedback, detailed models of radio source evolution are required. We present an extension to current analytic models that encompasses young radio sources with physical sizes on sub-kiloparsec scales. This work builds on an existing young source dynamical model to include radiative losses in a flat environment, and as such, is the best physically-motivated Compact Symmetric Object model to date. Results predict that young radio sources experience significant radiative loss on length scales and spectral scales consistent with observed Compact Steep-Spectrum sources. We include full expressions for the transition to self-similar expansion and present this complete model of radio source evolution from first cocoon formation to end of source lifetime around 10^8 years within the context of a simplified King profile external atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.