Abstract

Terzan 5 is a rich globular cluster within the galactic bulge containing 39 known millisecond pulsars, the largest known population of any globular cluster. These faint pulsars do not have sufficient signal-to-noise ratio (S/N) to measure reliable flux density or polarization information from individual observations in general. We combined over 5.2 days of archival data, at 1500 and 2000 MHz, taken with the Green Bank Telescope over the past 12 years. We created high-S/N profiles for 32 of the pulsars and determined precise rotation measures (RMs) for 28. We used the RMs, pulsar positions, and dispersion measures to map the projected parallel component of the Galactic magnetic field toward the cluster. The 〈B ∣∣〉 shows a rough gradient of ∼6 nG arcsec−1 (∼160 nG pc−1) or, fractionally, a change of ∼20% in the R.A. direction across the cluster, implying Galactic magnetic field variability at sub-parsec scales. We also measured average flux densities S ν for the pulsars, ranging from ∼10 μJy to ∼2 mJy, and an average spectral index α = −1.35, where S ν ∝ ν α . This spectral index is flatter than most known pulsars, likely a selection effect due to the high frequencies used in pulsar searches to mitigate dispersion and scattering. We used flux densities from each observation to constrain the scintillation properties toward the cluster, finding strong refractive modulation on timescales of months. The inferred pulsar luminosity function is roughly power law, with slope at the high-luminosity end. At the low-luminosity end, there are incompleteness effects, implying that Terzan 5 contains many more pulsars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call