Abstract

Purpose: This study focused on radio-induced membrane alterations in order to assess some related parameters as potential biological indicators of ionizing radiation effects in cases of accidental overexposure. Materials and methods: Radio-induced membrane alterations were assessed after gamma-irradiation of human blood. Biophysical techniques based on fluorescent probe incorporation into isolated living lymphocytes and erythrocytes membranes were applied. Results: Using the technique of fluorescence polarization, the lipophilic phase of the membrane was shown to be more fluid whereas the lipid-protein interface of the membrane was shown to be more rigid after gamma-irradiation. Fluorescent anisotropy modifications showed dose-time effect relationships after radiation exposure. Ionizing radiation induced a decrease in steadystate anisotropy values but did not affect the probe's lifetime as assessed by fluorescence lifetime distribution technique. These data suggest that the anisotropy variations are representative of the local properties of the fluorescent probe's micro-environment. However, the distribution width showed a decrease pointing towards radiation-induced changes of membrane domain organization, probably due not only to membrane water penetration related to lipoperoxidation, but also to compositional changes and redistribution of membrane components. In contrast, the lack of radiation effect observed using the lateral diffusion index technique may be related to the integrated overview of the radio-induced modifications of the membrane provided by this technique, which pointed out radio-induced damage to the membrane in micro-domains. Conclusion: These findings suggest the utility of structural membrane modification measurements as an early bio-indicator of ionizing radiation exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.