Abstract
The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible. We present ClaRAN - Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks (Faster R-CNN) method. Specifically, we train and test ClaRAN on the FIRST and WISE images from the Radio Galaxy Zoo Data Release 1 catalogue. ClaRAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. ClaRAN is the first open-source, end-to-end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (< 200 milliseconds per image) and accurate (>= 90 %) fashion. Future work will improve ClaRAN's relatively lower success rates in dealing with multi-source fields and will enable ClaRAN to identify sources on much larger fields without loss in classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.