Abstract

A resonant method based on a tunnel-diode oscillator for precision measurements of relative impedance changes in materials is described. The system consists of an effective self-resonant LC tank circuit driven by a forward-biased tunnel diode operating in its negative resistance region. Samples under investigation are placed in the core of an inductive coil and impedance changes are determined directly from the measured shift in resonance frequency. A customized low temperature insert is used to integrate this experiment with a commercial Model 6000 Physical Property Measurement System (Quantum Design). Test measurements on a manganese-based perovskite sample exhibiting colossal magnetoresistance indicate that this method is well suited to study the magnetoimpedance in these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.