Abstract

A newly developed DNA measurement method for multiple single nucleotide polymorphism (SNP) typing using a radio-frequency identification (RFID) sensor chip was demonstrated. The RFID sensor chip monolithically integrates a sensor, amplifier, analog-to-digital converter (ADC), and a passive wireless communication interface for receiving commands and transmitting data on a 2.5×2.5 mm2 silicon chip. For the simultaneous multitarget measurement, anticollision control and peak-power suppression are essential. To assign a unique identification number (UID) for the identification of multiple sensor chips, a reproducible random number generator circuit (RRG) was designed and installed on the chip. Peak-power consumption was reduced to 1018 µW by a clock gating of functional circuit blocks. Multiple SNP typing was carried out by simultaneously operating five RFID sensor chips (four with photosensors and one with a temperature sensor). The target DNA was captured on the sensor chips, and SNPs were detected by observing bioluminescence. Finally, the observed data were wirelessly transmitted to the reader.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.