Abstract
Radio frequency fingerprint (RFF) identification is a popular topic in the field of physical layer security. However, machine learning based RFF identification methods require complicated feature extraction manually while deep learning based methods are hard to achieve robust identification performance. To solve these problems, we propose a novel RFF identification method based on heat constellation trace figure (HCTF) and slice integration cooperation (SIC). HCTF is utilized to avoid the manual feature extraction and SIC is adopted to extract more features automatically in RF signals. Experimental results show that our proposed HCTF-SIC identification method can achieve higher accuracy than the existing RFF methods. The identification accuracy achieves 91.07% when SNR <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\pmb {=}$ </tex-math></inline-formula> 0 dB and it is even higher than 99.64% when the SNR <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\pmb {\ge }$ </tex-math></inline-formula> 5 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.