Abstract
The tangential neutral beam injection in KSTAR low confinement mode plasma is rapidly accompanied by the electromagnetic emissions in radio frequency (RF) range (0.1–1 GHz). The RF emission is initially onset within 1 ms from the beam injection, at discrete frequencies with steadily increasing intensity. The frequency spacing for these discrete emission lines corresponds to the deuteron cyclotron frequency, at a location midway between the magnetic axis and the edge. Further, the observed discrete frequencies lie in the lower hybrid frequency (fLH) range in a broad region on the low field side (LFS). As the initial RF emission becomes saturated, there is another onset of intense RF bursts occurring at discrete frequencies, broadening the emission frequency range further, either at higher or lower frequencies. In some cases, the time interval of the intense RF bursts at the dominant frequency is comparable with the toroidal rotation period at the radial location where fLH ∼ dominant frequency. The rapid rise and saturation of RF emission intensity in a broad frequency range indicate that a small population of fast ions is sufficient for the growth of energetic particle driven instabilities on the LFS. The multiple onsets in RF emission and the intense RF burst repetition frequency comparable with toroidal rotation frequency indicate the possibility that reorganization in the anisotropic fast ion population results in localized growth of the above instabilities. A gradual decay of RF emission intensity over few tens of milliseconds indicate that enhanced population of fast ions has damping effect on these instabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.