Abstract

Design considerations for the traditional low frequency circuits and the RF circuits are quite different. In low frequency design, the maximum signal transfer occurs when the source presents low impedance while the load presents high impedance. A typical example is a buffer, where the input impedance is high and the output impedance is low. As long as that requirement is fulfilled, the designer is capable of choosing arbitrary levels of impedance that best suits the circuit requirements or applications. Therefore this chapter aims to provide background on impedance matching between source and load, with or without a transmission line. The analysis can be conducted by using Smith Charts and S-Parameters, which are also presented in this chapter. The analysis in this chapter is oriented to RFID applications whereas other books provide general analysis. During RF design, the impedances should be matched for maximum signal transfer. Additionally, when the circuits are connected using transmission lines, they should match also the standard values of the transmission lines. At very low frequencies, transmission lines can be thought as just a wire. Nevertheless, at high frequencies, the signal wavelength is comparable to or smaller than the length of the transmissions line and power can be seen as traveling waves. As a matter of fact, even a conductor can be thought as a transmission line in a high frequency circuit. Most RF equipments and coaxial cables use the standard impedances of 50 or 75 Ω. The value of 75 Ω is used, as an example, in cable TV equipment, since this value provides the minimum losses, as it is desired in transmitting the signal over long distances. In fact, the value of impedance for minimum loss should be 77 Ω, but it was rounded to 75 Ω by convenience. The value of 50 Ω corresponds to a reasonable compromise, the average, between the minimum loss of a 77 Ω and the maximum power handling capability given of 30 Ω.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call