Abstract

This article describes the evaluation of a novel method of tissue displacement for use in the elastographic visualization of radio-frequency (rf) ablation-induced lesions. The method involves use of the radio-frequency ablation electrode as a displacement device, which provides localized compression in the region of interest. This displacement mechanism offers the advantage of easy in vivo implementation since problems such as excessive lateral and elevational displacements present when using external compression are reduced with this approach. The method was tested on a single-inclusion tissue-mimicking phantom containing a radio-frequency ablation electrode rigidly attached to the inclusion center. Full-frame rf echo signals were acquired from the phantom before and after electrode displacements ranging from 0.05 to 0.2 mm. One-dimensional cross-correlation analysis between pre- and postcompression signals was used to measure tissue displacements, and strains were determined by computing the gradient of the displacement. The strain contrast, contrast-to-noise ratio, and signal-to-noise ratio were estimated from the resulting strain images. Comparisons are drawn between the elastographically measured dimensions and those known a priori for the single-inclusion phantom. Electrode displacement elastography was found to slightly underestimate the inclusion dimensions. The method was also tested on a second tissue-mimicking phantom and on in vitro rf-ablated lesions in canine liver tissue. The results validate previous in vivo findings that electrode displacement elastography is an effective method for monitoring rf ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.