Abstract
Sixteen pulsars have been discovered so far in blind searches of photons collected with the Large Area Telescope on the Fermi Gamma-ray Space Telescope. We here report the discovery of radio pulsations from two of them. PSR J1741-2054, with period P=413ms, was detected in archival Parkes telescope data and subsequently has been detected at the Green Bank Telescope (GBT). Its received flux varies greatly due to interstellar scintillation and it has a very small dispersion measure of DM=4.7pc/cc, implying a distance of ~0.4kpc and possibly the smallest luminosity of any known radio pulsar. At this distance, for isotropic emission, its gamma-ray luminosity above 0.1GeV corresponds to 25% of the spin-down luminosity of dE/dt=9.4e33erg/s. The gamma-ray profile occupies 1/3 of pulse phase and has three closely-spaced peaks with the first peak lagging the radio pulse by delta=0.29P. We have also identified a soft Swift source that is the likely X-ray counterpart. In many respects PSR J1741-2054 resembles the Geminga pulsar. The second source, PSR J2032+4127, was detected at the GBT. It has P=143ms, and its DM=115pc/cc suggests a distance of ~3.6kpc, but we consider it likely that it is located within the Cyg OB2 stellar association at half that distance. The radio emission is nearly 100% linearly polarized, and the main radio peak precedes by delta=0.15P the first of two narrow gamma-ray peaks that are separated by Delta=0.50P. Faint, diffuse X-ray emission in a Chandra image is possibly its pulsar wind nebula. PSR J2032+4127 likely accounts for the EGRET source 3EG J2033+4118, while its pulsar wind is responsible for the formerly unidentified HEGRA source TeV J2032+4130.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.