Abstract
We present extensive radio and X-ray observations of the nearby Type Ic SN 2007gr in NGC 1058 obtained with the Very Large Array and the Chandra X-ray Observatory and spanning 5 to 150 days after explosion. Through our detailed modeling of these data, we estimate the properties of the blastwave and the circumstellar environment. We find evidence for a freely-expanding and non-relativistic explosion with an average blastwave velocity, v~0.2c, and a total internal energy for the radio emitting material of E ~ 2 x 10^46 erg assuming equipartition of energy between electrons and magnetic fields (epsilon_e=epsilon_B=0.1). The temporal and spectral evolution of the radio emission points to a stellar wind-blown environment shaped by a steady progenitor mass loss rate of Mdot ~ 6 x 10^-7 solar masses per year (wind velocity, v_w=10^3 km/s). These parameters are fully consistent with those inferred for other SNe Ibc and are in line with the expectations for an ordinary, homologous SN explosion. Our results are at odds with those of Paragi et al. (2010) who recently reported evidence for a relativistic blastwave in SN 2007gr based on their claim that the radio emission was resolved away in a low signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we show that the exotic physical scenarios required to explain the claimed relativistic velocity -- extreme departures from equipartition and/or a highly collimated outflow -- are excluded by our detailed Very Large Array radio observations. Moreover, we present an independent analysis of the VLBI data and propose that a modest loss of phase coherence provides a more natural explanation for the apparent flux density loss which is evident on both short and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc supernova.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.