Abstract

Abstract Our imaging of radicals interacting with surfaces (IRIS) method was used to investigate radical-surface reactions during low-temperature plasma-enhanced chemical vapor deposition (PECVD) processes. Special emphasis was placed on the analysis of surface reactivities for CH, SiH, CN, NH, NH2, CF2, and SiCl2 radicals during film growth. The effects of plasma parameters, such as radio frequency (rf) power and gas composition, substrate temperature, and substrate bias on radical-surface reactivity were analyzed. Different radicals exhibit different behavior at the surface of a depositing film. Specifically, CH, SiH, and CN are "sticky", with high surface reactivities. In contrast, other species such as NH, CF2, and SiCl2 do not stick to the surface of growing films and, in some cases are actually generated at the surface of the depositing film. Different plasma systems and parameters can have an effect on the stickiness of some of these species. Our IRIS measurements indicate a molecule's surface sticking probability may also be related to the molecule's electronic configuration and stability, with the most reactive species being molecules with a doublet electron configuration. In contrast, the singlet species examined here tend to be generated at the surface during film deposition. Our results also indicate that when a molecule scatters with greater than 100 % probability, it is likely to be strongly affected by energetic ion bombardment of the film surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.