Abstract

For many material processes, desired radical species at excited states are produced which interact with a given substrate for a certain period of time allowing chemical reactions between them to occur and complete. Hence, it is important to maintain the population of the excited radical species for an extended period of time, i.e., their lifetime, which is defined as the time for emission intensity to decay to 1/e of the initial intensity. In this study, a femtosecond–nanosecond (fs–ns) dual-laser system was employed to generate desired radical species via the fs laser and, then, to extend the lifetime of the radical species by the ns laser with different time delays between the two fs–ns laser pulses. The proposed method is demonstrated for a N2–CO2 mixture with CN as the radical species. The results show that the lifetime of CN radical species can be significantly extended, particularly the (3, 3) spectral line which was extended from 30 to 200 ns. By using a wavelength-tunable ns laser, the lifetime of most radical species can be extended which may increase the process efficiency for many material processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.