Abstract

Methacrylated gelatin (GelMA) in the form of methacryloyl, methacrylate, and methacrylamide is an established and widely accepted photocrosslinkable bioink, for three dimensional bioprinting of various tissues. One of the limitations of photocrosslinkable bioinks is the inability to control the free radicals generated by photoinitiators and ultraviolet (UV) rays. The presence of excess free radicals compromises the viability and functionality of cells during crosslinking. In this study, ascorbic acid, a known free radical scavenger (FRS) molecule, was introduced into the GelMA bioink formulation to protect the cell viability, proliferation, and tissue functions of 3D bioprinted parenchymal liver constructs. The concentration of FRS in the bioink was optimized and used for 3D bioprinting of HepG2 cells. The results confirmed that the inclusion of 3.4 mM FRS in the GelMA bioink formulation nullified the excess ROS formed inside the cells. Furthermore, the optimized GelMA formulation containing FRS preserved and improved the cell activity, albumin, and urea synthesis in the 3D construct over 7 days in culture. In the future, this concept could be implemented in the biofabrication of large liver constructs that require multiple or longer durations of UV irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call