Abstract
Resveratrol—made famous by its presence in red wine—has been touted for its health benefits. Oligomers of the compound may have even more promising medicinal properties, as they exhibit anti-inflammatory, immunomodulatory, and cytotoxic activities in cell studies. But getting enough of these complex polyphenols to study their mechanisms of action has been challenging. Chemists led by the University of Michigan’s Corey Stephenson and the University of Ottawa’s Derek Pratt now report a stereoconvergent synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C in 13 steps (Science 2016, DOI: 10.1126/science.aaj1597). Their strategy makes use of a persistent radical (shown) that’s derived from the resveratrol dimer, e-viniferin. “Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization,” the chemists point out in the report. “However, examples of their use in the synthesis of small molecules are rare.” Stephenson and Pratt n...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.