Abstract

AbstractA semiprime ring $R$ is called a $\ast$-ring if the factor ring $R/I$ is in the prime radical for every nonzero ideal $I$ of $R$. A long-standing open question posed by Gardner asks whether the prime radical coincides with the upper radical $U(\ast _{k})$ generated by the essential cover of the class of all $\ast$-rings. This question is related to many other open questions in radical theory which makes studying properties of $U(\ast _{k})$ worthwhile. We show that $U(\ast _{k})$ is an N-radical and that it coincides with the prime radical if and only if it is complemented in the lattice $\mathbb{L}_{N}$ of all N-radicals. Along the way, we show how to establish left hereditariness and left strongness of important upper radicals and give a complete description of all the complemented elements in $\mathbb{L}_{N}$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call