Abstract

Butadiyne nanocrystals in water are usually polymerized by UV or gamma-ray irradiation to give polydiacetylene (PDA) nanocrystals. In this study, we confirmed that solid-state polymerization of 1,6-di(N-carbazolyl)-2,4-hexadiyne (DCHD) and 5,7-dodecadiyn-1,12-diyl bis[N-(butoxycarbonyl-methyl)carbamate] (4BCMU) could be stimulated by water-soluble radical initiators. The radical initiators used were potassium peroxodisulfate, three kinds of azo-type compounds and a redox initiator. In all cases, the solid-state polymerization was confirmed by color change into blue indicating that PDA modified by the radical residues at the end was formed. However, nanocrystal cohesion occurred especially when the concentration of the initiators was high or the dispersion was kept for a long time. In order to improve the dispersion stability, two kinds of surfactants, i.e., sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTMAC), were added to the DCHD nanocrystal aqueous dispersion. As a result, when anionic SDS was added, the solid-state polymerization of nanocrystals proceeded without coagulation and quantitative conversion was confirmed for all initiators. Cationic DTMAC has no effect on dispersion stabilization. PDA nanocrystal surfaces in water are negatively charged in nature and electric interaction of nanocrystals with the cations results in decrease of surface charge and aggregation of nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.