Abstract

Statistical copolymers of 2-vinylpyridine (VP) with oligo(ethylene glycol) methyl ether methacrylates of two different molecular weights (300g/mol (OEGMA300) and 1100g/mol (OEGMA1100)), were prepared by free radical polymerization. The reactivity ratios of these two sets of monomers were estimated using the Finemann–Ross, the inverted Finemann–Ross and the Kelen–Tüdos graphical methods. Structural parameters of the copolymers were obtained by calculating the dyad monomer sequence fractions and the mean sequence length. The effect of the length of the oligo(ethylene glycol) group on the copolymer structure is discussed. The glass-transition temperature (Tg) values of the VP copolymers with OEGMA300 were measured and examined in the frame of several theoretical equations, allowing the prediction of these Tg values. The copolymers of VP with OEGMA1100 exhibited the characteristic melting endotherm, due to the crystallinity of the methacrylate sequences and glass transition temperatures attributed to the PVP sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.