Abstract

Amino acid and peptide radical cations, M*+, are formed by oxidative dissociations of [Cu(auxiliary ligand)(M)]*2+ and [Metal(III)(salen)(M)]+ complexes. The most easily formed radicals contain either an aromatic or basic amino acid residue. Aromatic amino acids have low ionization energies, are easily oxidized and delocalize the charge and spin over the ring systems; basic amino acids facilitate formation of alpha-radicals that have captodative structures in which the charge and spin are formally separated, although feeding back some of the charge onto the amide or carboxyl group adjacent to the radical center through hydrogen bonding enriches the electron-withdrawing properties and is highly stabilizing. DFT calculations located five isomers of His*+ with an alpha-radical with a captodative structure at the global minimum in a deep potential well. An IRMPD spectrum confirmed that this isomer is the experimentally observed "long-lived" isomer. When both charge and spin are on the peptide backbone, as in [GGG]*+, captodative structures have the lowest energies; the barriers to interconversion between the three isomeric alpha-radicals of [GGG]*+ are high as the charge impedes migration of a hydrogen atom. Dissociation of [GGG]*+ is charge-driven. In peptide radical cations containing a basic amino acid residue the charge is sequestered on the side chain and the radical center, either on the backbone or on another side chain, initiates the fragmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.