Abstract

The coordination and redox chemistry of 9,10-phenanthreneiminoquinone (PIQ) with osmium ion authenticating the [Os(II)(PIQ(•-))], [Os(III)(PIQ(•-))], [Os(III)(C,N-PIQ)], [Os(III)(PIQ)], and [Os(III)(PIQ(2-)) ] states of the [Os(PIQ)] core in the complexes of types trans-[Os(II)(PIQ(•-))(PPh3)2(CO)Br] (1), trans-[Os(III)(PIQ(•-))(PPh3)2Br2] (2), trans-[Os(III)(C,N-PIQ)(PPh3)2Br2]·2CH2Cl2 (3·2CH2Cl2), trans-[Os(III)(C,N-PIQ(Br))(PPh3)2Br2]·2CH2Cl2 (4·2CH2Cl2), trans-[Os(III)(C,N-PIQ(Cl2))(PPh3)2Br2] (6), trans-[Os(III)(PIQ(•-))(PPh3)2Br2](+)1/2I3(-)1/2Br(-) (1(+)1/2I3(-)1/2Br(-)), [Os(III)(PIQ)(PPh3)2Br2](+) (2(+)), and [Os(III)(PIQ(2-))(PPh3)2Br2](-) (2(-)) are reported (PIQ(•-) = 9,10-phenanthreneiminosemiquinonate anion radical; C,N-PIQ = ortho-metalated PIQ, C,N-PIQ(Br) = ortho-metalated 4-bromo PIQ, and C,N-PIQ(Cl2) = ortho-metalated 3,4-dichloro PIQ). Reduction of PIQ by [Os(II)(PPh3)3(H)(CO)Br] affords 1, while the reaction of PIQ with [Os(II)(PPh3)3Br2] furnishes 2. Oxidation of 1 with I2 affords 1(+)1/2I3(-)1/2Br(-), while the similar reactions of 2 with X2 (X = I, Br, Cl) produce the ortho-metalated derivatives 3·2CH2Cl2, 4·2CH2Cl2, and 6. PIQ and PIQ(2-) complexes of osmium(III), 2(+) and 2(-), are generated by constant-potential electrolysis. However, 2(+) ion is unstable in solution and slowly converts to 3 and partially hydrolyzes to trans-[Os(III)(PQ(•-))(PPh3)2Br2] (2PQ), a PQ(•-) analogue of 2. Conversion of 2(+) → 3 in solution excludes the formation of aryl halide as an intermediate for this unique ortho-metalation reaction at 295 K, where PIQ acts as a redox-noninnocent ambidentate ligand. In the complexes, the PIQ(•-) state where the atomic spin is more localized on the nitrogen atom is stable and is more abundant. The reaction of 2PQ, with I2 does not promote any ortho-metalation reaction and yields a PQ complex of type trans-[Os(III)(PQ)(PPh3)2Br2](+)I5(-)·2CH2Cl2 (5(+)I5(-)·2CH2Cl2). The molecular and electronic structures of 1-4, 6, 1(+), and 5(+) were established by different spectra, single-crystal X-ray bond parameters, cyclic voltammetry, and DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.