Abstract

Context. Quantum interference phenomena play a fundamental role in the formation of linear polarization that arises from scattering processes in multiplets of the solar spectrum. In particular, the J-state interference between different line components of a multiplet (arising from transitions in a two-term atom) produces significant effects in the linearly polarized spectra. Aims. We aim to solve the polarized radiative transfer equation for a two-term atom with the unpolarized lower term in isothermal slabs, including the effect of the interference between the upper J-states and partial frequency redistribution (PRD). We consider only the case of non-magnetic scattering. Methods. The PRD matrix for the J-state interference derived in previous works is incorporated into the polarized transfer equation. The standard form of the two-level atom transfer equation is extended to a two-term atom. The transfer problem is then solved using a traditional polarized approximate lambda iteration method. Results. We show how the PRD and the J-state interference together affect the shapes of the (I,Q/I) profiles. We present the benchmark solutions for isothermal, constant-property slabs of a given optical thickness. We consider a hypothetical 2 S − 2 P doublet produced by an L = 0 → 1 → 0 scattering transition with spin S = 1/2. We present the results in the form of Stokes (I,Q/I )p rof iles for different values of (i) the line separation, (ii) optical thickness, (iii) thermalization parameter, and (iv) the continuum opacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.