Abstract

The best options to parametrize a radiative transfer model change according to the response variable used for fitting. To predict transmitted radiation, the turbid medium approach performs much better than the porous envelop, especially when accounting for the intra-specific variations in leaf area density but crown shape has limited effects. When fitting with tree growth data, the porous envelop approach combined with the more complex crown shape provides better results. When using a joint optimization with both variables, the better options are the turbid medium and the more detailed approach for describing crown shape and leaf area density. Solar radiation transfer is a key process of tree growth dynamics in forest. Determining the best options to parametrize a forest radiative transfer model in heterogeneous oak and beech stands from Belgium. Calibration and evaluation of a forest radiative transfer module coupled to a spatially explicit tree growth model were repeated for different configuration options (i.e., turbid medium vs porous envelope to calculate light interception by trees, crown shapes of contrasting complexity to account for their asymmetry) and response variables used for fitting (transmitted radiation and/or tree growth data). The turbid medium outperformed the porous envelope approach. The more complex crown shapes enabling to account for crown asymmetry improved performances when including growth data in the calibration. Our results provide insights on the options to select when parametrizing a forest radiative 3D-crown transfer model depending on the research or application objectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.